
J O U R N A L  OF M A T E R I A L S  SC IE N C E  23 (1988) 189-193 

Analysis of the electrical resistivity of 
double-layer metal film 

C. R. P ICHARD,  S. M E S S A A D I ,  A. J. TOSSER 
Laboratoire d'E/ectronique, Universite de Nancy 1, B.P. 239, 
54506 Vandoeuvre-les-Nancy Cedex, Nancy, France 

C. R. TELLIER 
Laboratoire de Chronometrie et Piezoelectricite, E.N.S.M.M., La Bouloie, Route de Gray, 
25030 Besancon Cedex, France 

Assuming that the various sources of scattering act independently in metal films and intro- 
ducing the mean-free path describing the Fuchs-Sondheimer effect and the grain-boundary 
scattering, an apparent size effect is defined for a double-layer metal film; a similar method is 
used for representing any source of scattering with reference to the base layer. General 
expressions for the electrical conductivity of a double-layer metal film are thus obtained. 
Qualitative agreement with previous results of other authors is found in the thickness range 
where these early expressions are valid. 

1. In troduc t ion  
Several authors [l-4] have analysed theoretically the 
effect of a metal overlayer on the electrical conduc- 
tivity of a metal film; in all cases the analytical form of 
the total conductivity is sophisticated and the elec- 
tronic scattering at the grain boundary is omitted. 

As some experiments have shown [5] that a very thin 
overlayer could cause a drastic variation in the film 
conductivity, we attempt in this paper to interpret 
these phenomena in the framework of multidimen- 
sional conduction models [5-7] based on the rep- 
resentation of any scattering effect by a mean free path 
[5]. This has been shown [5-8] to be a convenient tool 
for interpreting the transport properties in the total 
extent of the experimental domain, i.e. whatever the 
film structure and the surface roughness e.g. annealed 
or unannealed; this first point has been recently 
emphasized [7]. 

2. Theory 
2.1. General assumptions 
Previous theoretical studies [8] lead to a unique form 
of analytical equation for representing a given trans- 
port property of a metal film, either resistivity or Hall 
coefficient or thermoelectric power or thermal conduc- 
tivity; this type of equation holds when the film 
exhibits either a monocrystal or monocrystalline or 
columnar or polycrystalline structure. 

Moreover, the existence of film surfaces having 
unlike properties is easily taken into account in the 
calculation of the transport properties in the frame- 
works of the two- and three-dimensional conduction 
models [5-8]. 

However, we must not forget that the following 
basic assumptions are used [5]: 

(i) the different sources of scattering (phonons, 
grain-boundaries and external surfaces) act indepen- 
dently; 
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(ii) the effect of any scattering source may be 
represented by an associated electron mean free path; 

(iii) the effect of the roughness of an external sur- 
face is represented by the electronic specular reflection 
coefficient, p, earlier introduced by Fuchs [9]; 

(iv) the statistical effect of the roughness of the 
grain-boundary is represented by a transmission coef- 
ficient, t [5, 10], in the way suggested by Cottey and 
Warkusz [11 - 13]. 

Assumption (ii) gives an alternative procedure [14] 
for calculating the Fuchs-Sondheimer size effect [15]; 
the numerical values of conductivity obtained under 
this assumption are close to the exact ones [14]. 

This feature had not been established by Cottey 
[11], who initiated this description of the scattering at 
external film surfaces, because he only considered the 
case of soft surfaces; further studies [5, 16-20] in this 
way have led to more general expressions [7, 8], valid 
for any value o fp  and gave a theoretical basis [14] for 
identifying the extension of the Cottey model [5, 16] 
with the Fuchs-Sondheimer model [15]. 

For a theoretical description of the effect of an 
overlayer the following further assumption is used: 

(v) the top surface of the metal layer on which the 
overlayer is deposited is regarded as a grain boundary. 

This assumption requires that the overlayer be con- 
tinuous and does not allow the study of quantum size 
effects [5] for which special models have been 
proposed by several workers [5]. 

Let us remember that when two different specular 
reflection coefficients p~ and P2, must be used for 
describing external metal surfaces exhibiting unlike 
roughness properties, a unique effective coefficient,/5 
[18, 21] may be introduced in the general equations 
obtained in the frameworks of the multidimensional 
models [5], with either [18] 

/5 = (PlP2) 1/2 Pl ,  P2 ~ I (la) 
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or [22] 

/5 = [(1 + p,)(1 + P2) - (1 - P,P2)] 

x [(1 + p,)(1 + P2) + (1 - P,P2)] (lb) 

2.2. The appa ren t  size ef fec t  
Introducing the transmission coefficient of the layer- 
overlayer boundary, s, and the electronic specular 
reflection coefficient at the top surface of the over- 
layer, q, it is clearly seen (Fig. 1) that the situation is 
similar to an external surface scattering with a result- 
ant specular coefficient, Pr, given by 

p, = s2q (2) 

provided that any electron path crosses the layer and 
the overlayer; this simplified view is acceptable when 
the electron mean free path in any bulk material is 
much larger than the overlayer thickness; this simpli- 
fying assumption is retained in this paper. 

The apparent size effect can then be interpreted on 
the basis of the extended Cottey model [5, 20] by 
introducing the apparent specular reflection coef- 
ficient p,, given by either 

Pa 

o r  

Pa 

= ( P r P l )  1/2 Pr, Pl ~ 1 (3a) 

= [(1 + p,)(1 + p,) - (1 - p,p,)]  

x [(1 + p,)(1 + p,) + (1 - p,p,)]  1 (3b) 

where p~ is the specular reflection coefficient at the 
base external surface of the metal film (Fig. 1). 

Introducing Equation 2 into Equation 3, gives 

Pa = (s2qpl) ~/2 s2q, Pl ~ 1 (4a) 

p~ = [(1 + pl)(1 + sZq) - (1 - s2qp,)] 

x [(1 +p , ) (1  + s 2 q ) +  (1 - s2qpl)] ~ (4b) 

2.3. Background scattering 
Given the thickness and the value of the electron mean 
free path in the material building the layer and the 
overlayer, dl and 201 and d2 and 202, respectively, and 
defining the relative thickness of the overlayer, m, by 
the equation 

m = d2/d 1 (5) 

and assuming that along any electron path the path 
lengths within the overlayer and the layer, L~ and L 2 

respectively, are related by Equation 5, the apparent 

d,[~,o, 

Figure 1 Electrical and  geometrical  parameters  for the double- layer  
film. 
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Figure 2 Definition of the interspace along a given electron path, D'g~ 
and D~2, in the case of an array of planar grain boundaries perpen- 
dicular to Vy. 

probability that an electron carries along a path of 
length, L, before scattering, p(L ,  2a), is expressed as 

p(L ,  2,) = exp L exp 20~ 

(6) 

where 2, is the apparent bulk mean free path (Fig. 2). 
Equation 6 can be rewritten as 

p(L, 2a) = e x p [ ( - ~ ) ( 1  + 202]J 

Consequently 
' 

L = ¢~01 1 + m ~ j  (1 + m )  

an alternative form of which is 

(7) 

(8) 

(9) 

2.4. Grain-boundary scattering 
In close similarity to the above assumptions and also 
assuming that the grain diameter in the layer and the 
overlayer is Dg~ and Dg2, respectively, and that the 
arrays of grain boundaries of the layer and of the 
overlayer both extend in two or three dimensions, the 
number of intercepts, N, of an electron path at the 
arrays of grain boundaries is defined by 

where 

N = NI + N2 (10) 

N, = L,/D~I ( l la)  

N 2 = L 2/Dg 2 ( l lb)  

where D~I and D'g2 are the distances along the electron 
path between two successive intercepts with a given 
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array of grain boundaries (Fig. 2). Hence 

N -  Ll [l %- mD'gl (12a) 
Dgl Dg2 

I °g'] N - L1 1 + m (12b) 
G 

It then seems convenient to define an apparent grain 
diameter, Dga, defined by 

LI + L2 L 
N - - (13) 

Dg~ Dg~ 

Equations 12 and 13 then give 

Dg, = Dgl[l  + mDg~g2] l ( l  + m ) (14) 

The whole set of the layer and thin overlayer (with 
respect to the bulk electron mean free path) can then 
be replaced by a fictive layer of thickness equal to the 
total film thickness, with an apparent grain diameter 
Dga and an apparent mean free path ha, and whose 
surface roughness can be described by an apparent 
specular reflection coefficient, p~. 

In the usual equation [5] for the electrical conduc- 
tivity in the framework of any multidimensional 
model [5, 20] the bulk conductivity of the layer, cr01, 
may then be replaced by a0,, with 

0"°1 ~ (1 + m)(1 + m2o12~1)  - I  (15) G0 a - -  ~ Aa z G0 I 
A01 

as derived from Equation 8. 

2.5. Total film conductivity 
The electrical conductivity of the total film, ~r, is then 
[5-81 

af = ao12a/2olA(b, 7) (16) 

with 

b = l~ -I + Clv 1 (17) 

3) = a 1(1 --t- C 2 y  1) (18) 

kt = (d, %- d2)2a1(1%- p,)[2(1 - pa)] -1 (19) 

v = Dga2al(1%- 012(1 - t)] 1 (20) 

A(b,y) = 3 [ y _  ½ + (1 - 72 ) l n ( 1  + 7-I)] 

(21) 

where 

C = 4/zt (22) 

C1 = 1 - C, for polycrystalline films (23a) 

C1 = - C, for monocrystalline (23b) 
and columnar films 

In the case where the thickness of the overlayer is 
much thinner than that of the layer, asymptotic for- 
mulae can be used, as follows 

2a ~ 2o, I1%- m ( l -  )@o~)] (24) 

Oga ~ O'gl [1%- m ( 1 -  Og~g21)] (25, 

d12ol 1 [ 1 % -  m '4,Ol (1%- pa)[2(1 -- Pa)] I 

v ~ Dg12~ 1 1 + m - ~ + 2o2JJ 

(26) 

(27) 

x (1 + t)[(2(1 - t)] -~ (28) 

When the overlayer is very thin, one can reasonably 
assume that the nucleation-growth procedure exhibits 
an epitaxial behaviour at the initial step, hence 

Og 2 ~ Og I (29) 

and finally 

ha ~ 401(1 + mu) (30) 

Dg a = Og 1 (31) 

Ooa = ~o1(1 + mu) (32) 

# ~ #111 + m(1 - u)] (33) 

v ,,~ vl[1 - mu] (34) 
with 

u = 1 401 (35) 
402 

#l = d12~1( 1 + Pa)[2( 1 -- Pa)] 1 (36) 

vl = Do2;]~(1 + t)[2(1 - t)] -1 (37) 

For a large range of film thickness, a recent study [8] 
has proposed a simple asymptotic equation for the 
reduced conductivity, i.e. 

o-r/a0 ~ (b7 + C2b) -1 (38a) 

with 

C2 = 3/8 (38b) 

Hence, from Equations 17, 33, 34 and 38, the follow- 
ing equation is derived: 

C 2 1 
0"f/0"01 ~ (1 + mu) 1 -4;- Y1 1 - m u  

1 1 C1 1 -1 1 
+ C2-- #l 1%- m(1 u) -~- C2 - -  J - # 1  1 - mu 

(39) 

+ 

i . e °  

C2 C 2 Cl C2 
rrf/rrol ~ 1 + - -  + - -  + - -  -- 

vt ,ul vl 
mu - rn C-22 I "~ 

l 

(40) 

u ) ] } '  (41) 

with 

C 2 C2 Cl C2 ~- 1 
cq/Ool = 1 + - -  + - -  + (42) 

vl /q vl / 

3. Comparison wi th  previous 
theoretical works 

Lucas [2] has proposed an analytical equation in the 
case of a double-layer metallic film exhibiting specular 
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scattering. The reduced film conductivity is written as 
follows ([2] Equation 16) 

o'f/a 0 = (dj + d2) -1 [dl + 

3 4 1 , ~ 0 2 )  2 / '1  dT] + ~Zo~ (,to~ - Jo F(T) , j  (43) 

where 

F(T) = ( T  3 - T ) ( I  - X2) (1  - Y2)[1 - X2y2] -' 

(44) 

with 

X = exp - K1/T (45a) 

Y = exp - K2/T (45b) 

Variations in - ~ F(T) dT with Kl have been calcu- 
lated by Lucas, for a series of values of/(2 ([2] Fig. 3). 
For the sake of simplicity, the values of af/a o have 
then been calculated (Equation 43) by introducing the 
numerical values of the integral ~2 F ( T ) d T  into 
Equation 43 (Fig. 3). 

Numerical values of Equation 16 have been cal- 
culated, neglecting the effect of grain boundaries 
(Dg = oo) and assuming that the electronic scattering 
at the base layer is completely specular. The data 
corresponding to Pa = 0.95 are given in Fig. 3; this 
value leads to a minimum deviation from Lucas' 
results. For any value ofpa a qualitative agreement is 
observed. 

However, our attention can be focused on the 
assumptions used by Lucas [2]. On the one hand, he 
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Figure 3 Variations in the reduced electrical conductivity 
in the framework of Lucas' Equation 16 [12] ( ), and 
from Equation 16 ( - - - ) .  

assumed that the scattering at the external surfaces of 
the double layer is specular and calculated the double- 
layer conductivity from a weighted average of the 
conductivity of any layer ([2] Equation 14]; this 
assumption holds when perfectly specular scattering 
occurs at the layer interface; on the other hand, he 
writes continuity relations for the electron distribution 
functions at the interface ([2] Equation 9). These two 
assumptions are not physically consistent. Conse- 
quently, the marked deviation at low 1<22 between 
Lucas' expression and the new equations cannot sus- 
tain any criticism against the proposed new model. 
Furthermore the variations in p~ with K2 show that an 
overlayer could accentuate the roughness of the sur- 
face of the double layer, whereas the base layer 
exhibited smooth surfaces. 

Bezak et al. [3] have proposed a general equation 
for the conductivity of a double-layer film starting 
from the Boltzmann equation and assuming that the 
specularity coefficients are given by Ziman-Soffer 
formulae and that the layer interface is represented by 
a potential step. 

The analytical equation is somewhat complicated 
and numerical values of the reduced conductivity have 
been computed [3] in the case where the scattering at 
the lower film boundary is totally specular and at the 
top boundary is totally diffuse. 

Neglecting grain-boundary scattering and taking 
the constant value 0.65 for Pa and introducing 
Equations 14 to 20 in Equation 38, leads to numerical 
data which are in qualitative agreement with Bezak 
et al's numerical data (Fig. 4); a marked quantitative 
deviation occurs in low values of m. 
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Figure 4 Variations in the reduced electrical conduc- 
tivity in the framework of Bezak et al. (Equation 10, by 
taking ~,0~/20z = 10) [3]. 
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Figure 5 Variations in the reduced electrical conduc- 
tivity in the framework of a multidimensional conduc- 
tion model (Equations 14 to 20 in Equation 38, by 

taking 201/202 = 2). 

At low values of m the results of Bezak et al. 
(related 201/202 = 10) can be obtained from the 
proposed equations by taking 201/2o2 = 2 (Fig. 5). An 
origin for this discrepancy could be found in the fact 
that Bezak et aI. have written the conservation of 
energy for an electron travelling from layer 1 to layer 
2 (Section 2.1 and Fig. 2) (hence VH > VF2), neglect- 
ing the fact that the distribution of electrons in layer 
1 also includes electrons which have been travelling 
from layer 2 to layer 1 that requires Vv2 > Wl except 
if the scattering at the top surface is purely diffuse; 
consequently the calculated value of the conductivity 
is lower than the true one. 

4. Conc lus ion  
The analysis of the electrical resistivity of a double- 
layer metal film can be based on apparent background 
grain-boundary and film-surface scattering defined in 
the framework of multidimensional conduction 
models [5]. Qualitative agreement with the earlier 
works of Lucas [2] and Bezak et  al. [3] is observed. 
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